Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 9(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764311

RESUMEN

Tomato spotted wilt virus (TSWV; species Tomato spotted wilt orthotospovirus; genus Orthotospovirus; family Tospoviridae) is a thrips-transmitted virus that can cause substantial economic losses to many crops, including tomato (Solanum lycopersicum). Since 2005, TSWV emerged as an economically important virus of processing tomatoes in the Central Valley of California, in part due to increased populations of the primary thrips vector, western flower thrips (WFT; Frankliniella occidentalis). To develop an understanding of the epidemiology of TSWV in this region, population densities of WFT and incidence of TSWV were monitored in California's processing tomato transplant-producing greenhouses and associated open fields from 2007 to 2013. Thrips were monitored with yellow sticky cards and in tomato flowers, whereas TSWV incidence was assessed with indicator plants and field surveys for virus symptoms. All thrips identified from processing tomato fields were WFT, and females were three-fold more abundant on sticky cards than males. Symptoms of TSWV infection were observed in all monitored processing tomato fields. Incidences of TSWV ranged from 1 to 20%, with highest incidence found in late-planted fields. There was no single primary inoculum source, and inoculum sources for thrips/TSWV varied depending on the production region. These results allowed us to develop a model for TSWV infection of processing tomatoes in the Central Valley of California. The model predicts that low levels of primary TSWV inoculum are amplified in early-planted tomatoes and other susceptible crops leading to highest levels of infection in later-planted fields, especially those with high thrips populations. Based upon these findings, an integrated pest management (IPM) strategy for TSWV in processing tomatoes in California was devised. This IPM strategy focuses on strategic field placement (identification of high-risk situations), planting TSWV- and thrips-free transplants, planting resistant varieties, monitoring for TSWV symptoms and thrips, roguing infected plants, thrips management targeting early generations, extensive sanitation after harvest, and strategic cropping to avoid overlap with winter bridge crops.

2.
Plant Dis ; 103(12): 3018-3030, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31545699

RESUMEN

California produces over 95% of the olives grown in the United States. In 2017, California's total bearing acreage for olives was 14,570 hectares producing 192,000 tons of olives valued at $186.6 million. During the early spring of 2016, unusual leaf and shoot lesions were detected in olive trees from superhigh-density orchards in the Northern San Joaquin and Sacramento valleys of California. Affected trees displayed numerous leaf and shoot lesions developing at wounds created by mechanical harvesters. The 'Arbosana' cultivar was highly affected by the disease, whereas the disease was sporadic in 'Arbequina' and not found in 'Koroneiki' cultivar. Two fungal species, Neofabraea kienholzii and Phlyctema vagabunda, were found to be consistently associated with the disease, and Koch's postulates were completed. Species identity was confirmed by morphology and molecular data of the partial large subunit rDNA, the internal transcribed spacer region, and partial beta-tubulin region. The disease signs and symptoms are described and illustrated.


Asunto(s)
Ascomicetos , Olea , Hojas de la Planta , Brotes de la Planta , Ascomicetos/citología , Ascomicetos/genética , Ascomicetos/fisiología , California , ADN de Hongos/genética , ADN Ribosómico/genética , Olea/microbiología , Hojas de la Planta/microbiología , Brotes de la Planta/microbiología
3.
Oecologia ; 190(1): 139-148, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31065807

RESUMEN

Plant pathogens can influence host characteristics such as volatile emissions, nutrient composition or plant color, modulating vector and non-vector insect dynamics in the ecosystem. While previous research has focused on insect attraction and dispersal to infected plants, little is known about mechanisms mediating these interactions. Here, we investigate the role of ethylene in green peach aphid (Myzus persicae) attraction to potyvirus-infected plants. In our experiments, we utilized two different potyviruses, Potato virus Y (PVY) and Turnip mosaic virus, in lab and field experiments. Consistent with previous studies, we show that greater numbers of aphids settle on potyvirus-infected plants in the lab and greater numbers of aphids are found in PVY-infected potato (Solanum tuberosum) fields compared to controls. In laboratory experiments, inhibition of ethylene signaling in plants either chemically or genetically prevented aphids from preferentially settling on potyvirus-infected plants. Virus spread was reduced in lab arenas by over 80% when ethylene signaling was inhibited chemically. Despite this, ethylene inhibition had no significant impact on virus spread in field mesocosms. Our results indicate that induction of ethylene signaling by potyviruses mediates aphid attraction to infected plants and virus spread; however, additional factors may contribute to plant-vector dynamics in complex communities. Specific components of ethylene signaling may be important targets for future management of vector-borne viruses and research on mechanisms mediating plant-vector-virus interactions.


Asunto(s)
Áfidos , Potyvirus , Solanum tuberosum , Animales , Ecosistema , Etilenos , Enfermedades de las Plantas
4.
Plant J ; 42(3): 376-91, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15842623

RESUMEN

In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1.


Asunto(s)
Genes de Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas , Inmunidad Innata/genética , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Hojas de la Planta/microbiología , Virus de Plantas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...